f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8ktc

NAG C Library Function Document
nag zungbr (f08ktc)

1 Purpose

nag_zungbr (fO8ktc) generates one of the complex unitary matrices Q or P which were determined by
nag zgebrd (f08ksc) when reducing a complex matrix to bidiagonal form.

2 Specification

void nag_zungbr (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
Integer k, Complex al[l, Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zungbr (f08ktc) is intended to be used after a call to nag zgebrd (f08ksc), which reduces a complex
rectangular matrix A to real bidiagonal form B by a unitary transformation: A = QBP". nag zgebrd
(fO8ksc) represents the matrices () and P as products of elementary reflectors.

This function may be used to generate Q or P explicitly as square matrices, or in some cases just the
leading columns of Q or the leading rows of P,

The various possibilities are specified by the parameters vect, m, n and k. The appropriate values to cover
the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:
nag_zungbr (order,Nag_FormQ,m,m,n,...)
(note that the array a must have at least m columns).
2. If m > n, to form the n leading columns of Q:
nag_zungbr (order,Nag_FormQ,m,n,n,...)
3. To form the full n by n matrix P:
nag_zungbr (order,Nag_FormP,n,n,m,...)
(note that the array a must have at least n rows).

4. If m < n, to form the m leading rows of P

nag_zungbr (order,Nag_FormP,m,n,m,...)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] fO08ktc.1

fO8ktc NAG C Library Manual

2: vect — Nag VectType Input

On entry: indicates whether the unitary matrix Q or P is generated as follows:

if vect = Nag_FormQ, () is generated;

if vect = Nag_FormP, P is generated.

Constraint. vect = Nag FormQ or Nag FormP.

3: m — Integer Input
On entry: the number of rows of the unitary matrix () or P to be returned.

Constraint: m > 0.

4: n — Integer Input
On entry: the number of columns of the unitary matrix Q or P to be returned.

Constraints:

n > 0;
if vect = Nag FormQ and m > k, m > n > k;
if vect = Nag FormQ and m < k, m = n;
if vect = Nag FormP and n > k, n > m > k;
if vect = Nag_FormP and n <k, n = m.
5: k — Integer Input

On entry: if vect = Nag FormQ, the number of columns in the original matrix A; if
vect = Nag_FormP, the number of rows in the original matrix A.

Constraint: k > 0.

6: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least max(l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag zgebrd

(fO8ksc).
On exit: the unitary matrix Q or P, or the leading rows or columns thereof, as specified by vect, m
and n.

7: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda > max (1, m).

8: tau[dim| — const Complex Input

Note: the dimension, dim, of the array tau must be at least (1,min(m,k)) when
vect = Nag_FormQ and at least (1, min(n,k)) when vect = Nag_FormP.

On entry: further details of the elementary reflectors, as returned by nag zgebrd (fO8ksc) in its
parameter tauq if vect = Nag_FormQ, or in its parameter taup if vect = Nag_FormP.

9: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

f08ktc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8ktc

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, k = (value).
Constraint: k > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

NE_ENUM_INT 3

On entry, vect = (value), m = (value), n = (value), k = (value).
Constraint: n > 0 and if vect = Nag_ FormQ and m > k, m > n > k;
if vect = Nag FormQ and m < k, m = n;

if vect = Nag FormP and n > k, n > m > k;

if vect = Nag FormP and n <k, n = m.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed matrix @) differs from an exactly unitary matrix by a matrix F such that
1], = O(e),

where ¢ is the machine precision. A similar statement holds for the computed matrix P

8 Further Comments

The total number of real floating-point operations for the cases listed in Section 3 are approximately as
follows:

1. To form the whole of Q:
©n(3m? — 3mn +n’) if m > n,
13—6m3 if m <m;

2. To form the n leading columns of () when m > n:
§n*(3m — n);

3. To form the whole of P":

[NP3645/7] f08ktc.3

fO8ktc NAG C Library Manual

13—6713 ifm>n,

8m3(3n® — 3mn +m?) if m < n;

4. To form the m leading rows of P when m < n:

§m2(3n —m).

The real analogue of this function is nag_dorgbr (f08kfc).

9 Example

For this function two examples are presented, both of which involve computing the singular value
decomposition of a matrix A, where

0.96 —0.81¢ —0.03+0.96c —0.91+2.060 —0.05+0.41%
—098+4198; —1.2040.19¢ —0.66+0.42¢ —0.81 4 0.56¢
0.62 — 0.467 1.01 +0.02¢ 0.63 —0.17c —1.11 4 0.60¢
—0.37 4+ 0.384¢ 0.19 -0.54¢ —0.98 —0.36¢ 0.22 —0.20¢
0.83 4+ 0.51% 0.20+0.01¢ —0.17 — 0.46¢ 1.47 +1.59:
1.08 —0.281 0.20 —0.12¢ —0.07 + 1.23¢ 0.26 + 0.26¢

A:

in the first example and

0.28 — 0.367 0.50 —0.86: —0.77 — 0.48¢ 1.58 + 0.667
A= —-050-1.10 —121+0.76i —0.32—-0.24; —0.27—1.15¢
0.36 —0.51¢ —0.07+ 1337 —0.75+0.47: —0.08 4+ 1.01:

in the second. A must first be reduced to tridiagonal form by nag zgebrd (f08ksc). The program then

calls nag_zungbr (f08ktc) twice to form) and P and passes these matrices to nag zbdsqr (f08msc),
which computes the singular value decomposition of A.

9.1 Program Text

/* nag_zungbr (f08ktc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
Integer i, ic, j, m, n, pda, pdc, pdu, pdvt, d_len;
Integer e_len, tauq len, taup_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *c=0, *taup=0, *taug=0, *u=0, *vt=0;
double *d=0, #*e=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define VT(I,J) vt[(J-1)*pdvt + I - 1]

#define U(I,J) ul(J-1)*pdu + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define VT(I,J) vt[(I-1)*pdvt + J - 1]

f08kic.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

#define U(I,J)
order =
#endif

ul (I-1)*pdu + J - 1]
Nag_RowMajor ;

INIT_FAIL(fail);
Vprintf ("£f08ktc

/* Skip heading
Vscanf ("s* ["\n]

in data file */
")

Example Program Results\n");

fO8ktc

’

for (ic = 1; ic <= 2; ++ic)
{
Vscanf ("$1d%1ds*x["\n] ", &m, &n);
d_len = n;
#ifdef NAG_COLUMN_MAJOR
pda = m;
pdc = n;
pdu = m;
pdvt = m;
e_len = n-1;
tauqg_len = n;
taup_len = n;
#else
pda = n;
pdc = n;
pdu = n;
pdvt = n;
e_len = n-1;
tauqg_len = nj;
taup_len = n;
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||
! (c = NAG_ALLOC(n * n, Complex)) ||
! (taup = NAG_ALLOC(taup_len, Complex)) ||
! (taug = NAG_ALLOC(taug_len, Complex)) ||
! (u = NAG_ALLOC(m * n, Complex)) ||
(vt = NAG_ALLOC(m * n, Complex)) ||
1 (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_len, double)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
/* Read A from data file */
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= n; ++3j)
Vscanf (" (%1f , %1f)", &A(i,Jj).re, &A(i,]).im)
}
Vscanf ("sx["\n] ");
/* Reduce A to bidiagonal form */
f08ksc(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Exrror from f08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
if (m >= n)
{
/* Copy A to VT and U */
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
{
VT(i,j).re = A(i,]).re;
VT(i,j).im = A(i,3).1im;
}
}
[NP3645/7] f08kic.5

fO8ktc NAG C Library Manual

for (i = 1; i <= m; ++1i)

for (§ = 1; § <= MIN(i,n); ++3)

/* Form Px*H explicitly, storing the result in VT =*/
fO8ktc(order, Nag_FormP, n, n, m, vt, pdvt, taup, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Form Q explicitly, storing the result in U =*/
f08ktc(order, Nag_FormQ, m, n, n, u, pdu, tauq, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Compute the SVD of A *x/
f08msc (order, Nag_Upper, n, n, m, 0, d, e, vt, pdvt, u,
pdu, c¢, pdc, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08msc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print singular values, left & right singular vectors =*/
Vprintf ("\nExample 1: singular values\n");
for (i = 1; i <= n; ++1i)
Vprintf ("%8.4f%s", d[i-1], i%8==02"\n":" ");
Vprintf ("\n\n") ;
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, n, vt, pdvt, Nag_BracketForm, "%7.4f",
"Example 1: right singular vectors, by row",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
o, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n") ;

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, u, pdu, Nag_BracketForm, "%7.4f",
"Example 1: left singular vectors, by column",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
¥
else
{

/* Copy A to VT and U */
for (i = 1; i <= m; ++i)
{
for (3 = 1i; j <= n; ++3)
{

f08ktc.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

VT(i,j).re = A(i,j).re;
VT(i,3).im = A(i,3).1im;

3
}
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= i; ++3)
{
U(i,j).re = A(i,j).re;
U(i,j).im = A(i,3j).1im;
b
}

/* Form P**H explicitly, storing the result in VT =*/
&fail);

fO8ktc(order, Nag_FormP, m, n, m, vt, pdvt, taup,
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥
/* Form Q explicitly, storing the result in U */

fO08ktc(order, Nag_FormQ, m, m, n, u, pdu, tauq, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute the SVD of A */

fO8msc(order, Nag_Lower, m, n, m, 0, 4, e, vt, pdvt,

pdu, c¢, pdc, &fail);

u,

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08msc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print singular values, left & right singular vectors */

Vprintf ("\nExample 2: singular values\n");
for (1 = 1; 1 <= m; ++1)
Vprintf ("%8.4f%s", d[i-1], i%8==0 2?"\n":" ");
Vprintf ("\n\n") ;
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, vt, pdvt, Nag_BracketForm, "%7.4f",

"Example 2: right singular vectors, by row",

Nag_IntegerLabels, 0, Nag_IntegerLabels,
o, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf ("\n") ;
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, m, u, pdu, Nag_BracketForm, "%7.4f",

"Example 2: left singular vectors, by column",

Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
¥
END:
if (a) NAG_FREE(a);
if (c) NAG_FREE(c);
if (taup) NAG_FREE (taup);
if (tauq) NAG_FREE (tauq);
[NP3645/7]

fO8ktc

JO8ktc.7

fO8ktc NAG C Library Manual

if (u) NAG_FREE (u);
if (vt) NAG_FREE (vt);
if (d) NAG_FREE(4);
if (e) NAG_FREE(e);

}

return exit_status;

9.2 Program Data

f08ktc Example Program Data

6 4 :Values of M and N, Example 1
(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A
3 4 :Values of M and N, Example 2
(0.28,-0.36) (0.50,-0.86) (-0.77,-0.48) (1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
(0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

9.3 Program Results

f08ktc Example Program Results

Example 1: singular values
3.9994 3.0003 1.9944 0.9995

Example 1: right singular vectors, by row

1
-0.6971,-0.0000)
0.2403, 0.0000)
-0.5123, 0.0000)
-0.4403, 0.0000)

2
0.0867,-0.3548)
0.0725,-0.2336)
0.3030,-0.1735)
0.5294, 0.6361)

3
0.0560,-0.5400)
0.2477,-0.5291) .7026, 0.2177
0) .4418, 0.3864
0)

.1667, 0.0258

.0678, 0.5162

4

.1878,-0.2253)

)

)

.3027,-0.0346)

[eNoNeoNe]

((- (
(((-
((- (
(((-

S w N R

Example 1: left singular vectors, by column

5634, 0.0016
.1205,-0.6108

. .2687,-0.2749
.0816, 0.1613

2
)
.2909, 0.1085)
)
)
)

0 .2451, 0.4657
0

0.1660, 0.3885

0

0

0

.4329,-0.1758

3

) .3787, 0.2987

)
.4667, 0.3821)

)

)

)

4
)
.0182,-0.0437)
.0800,-0.2276)
.2608,-0.5382)
.1002, 0.0140)
.4175,-0.4058)

.1984,-0.1737
.6253, 0.3304
.0307,-0.0816)

.0034, 0.1555
.2643,-0.0194
.1266, 0.1747

2487,-0.0926
3758, 0.0793

[cNoNoNoNoNe]

(_
(_
(_
(
(
(_

[oNoNoNoNoNe)
|
[cNoNoNoNoNe]

(-) (
() (
(-) (-
(0.1441,-0.1532) (-
(-) (
(-) (

o Ul W N

Example 2: singular values
3.0004 1.9967 0.9973

Example 2: right singular vectors, by row

0.6794, 0.2083
(-0.3149,-0.3208
0

1 2

1 (0.2454,-0.0001) (2942,-0.5843) (0.0162,-0.0810
)
) .0318,-0.0378

0. 0
2 (-0.1692, 0.5194 (0.1915,-0.4374) (0.5205,-0.0244
3 (-0.5553, 0.1403 (0.1438,-0.1507) (-0.5684,-0.5505

—_—_— W
—
—_— — D

Example 2: left singular vectors, by column

1 2
1 (0.6518, 0.0000) (-0.4312, 0.0000) (0.6239, 0.0000
2 (-0.4437,-0.5027) (-0.3794, 0.1026) (0.2014, 0.5961
3 (-0.2012, 0.2916) (-0.8122, 0.0030) (-0.3511,-0.3026

NOININN

08kte.8 (last) [NP3645/7]

	f08ktc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

