
NAG C Library Function Document

nag_zungbr (f08ktc)

1 Purpose

nag_zungbr (f08ktc) generates one of the complex unitary matrices Q or PH which were determined by
nag_zgebrd (f08ksc) when reducing a complex matrix to bidiagonal form.

2 Specification

void nag_zungbr (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
Integer k, Complex a[], Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zungbr (f08ktc) is intended to be used after a call to nag_zgebrd (f08ksc), which reduces a complex

rectangular matrix A to real bidiagonal form B by a unitary transformation: A ¼ QBPH . nag_zgebrd

(f08ksc) represents the matrices Q and PH as products of elementary reflectors.

This function may be used to generate Q or PH explicitly as square matrices, or in some cases just the

leading columns of Q or the leading rows of PH .

The various possibilities are specified by the parameters vect, m, n and k. The appropriate values to cover
the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:

nag_zungbr (order,Nag_FormQ,m,m,n,...)

(note that the array a must have at least m columns).

2. If m > n, to form the n leading columns of Q:

nag_zungbr (order,Nag_FormQ,m,n,n,...)

3. To form the full n by n matrix PH :

nag_zungbr (order,Nag_FormP,n,n,m,...)

(note that the array a must have at least n rows).

4. If m < n, to form the m leading rows of PH :

nag_zungbr (order,Nag_FormP,m,n,m,...)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ktc

[NP3645/7] f08ktc.1



2: vect – Nag_VectType Input

On entry: indicates whether the unitary matrix Q or PH is generated as follows:

if vect ¼ Nag FormQ, Q is generated;

if vect ¼ Nag FormP, PH is generated.

Constraint: vect ¼ Nag FormQ or Nag FormP.

3: m – Integer Input

On entry: the number of rows of the unitary matrix Q or PH to be returned.

Constraint: m � 0.

4: n – Integer Input

On entry: the number of columns of the unitary matrix Q or PH to be returned.

Constraints:

n � 0;
if vect ¼ Nag FormQ and m > k, m � n � k;
if vect ¼ Nag FormQ and m � k, m ¼ n;
if vect ¼ Nag FormP and n > k, n � m � k;
if vect ¼ Nag FormP and n � k, n ¼ m.

5: k – Integer Input

On entry: if vect ¼ Nag FormQ, the number of columns in the original matrix A; if
vect ¼ Nag FormP, the number of rows in the original matrix A.

Constraint: k � 0.

6: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgebrd
(f08ksc).

On exit: the unitary matrix Q or PH, or the leading rows or columns thereof, as specified by vect, m
and n.

7: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1;mÞ.

8: tau½dim� – const Complex Input

Note: the dimension, dim, of the array tau must be at least ð1;minðm; kÞÞ when
vect ¼ Nag FormQ and at least ð1;minðn; kÞÞ when vect ¼ Nag FormP.

On entry: further details of the elementary reflectors, as returned by nag_zgebrd (f08ksc) in its
parameter tauq if vect ¼ Nag FormQ, or in its parameter taup if vect ¼ Nag FormP.

9: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

f08ktc NAG C Library Manual

f08ktc.2 [NP3645/7]



6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, k = hvaluei.
Constraint: k � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.

NE_ENUM_INT_3

On entry, vect ¼ hvaluei, m ¼ hvaluei, n ¼ hvaluei, k ¼ hvaluei.
Constraint: n � 0 and if vect ¼ Nag FormQ and m > k, m � n � k;
if vect ¼ Nag FormQ and m � k, m ¼ n;
if vect ¼ Nag FormP and n > k, n � m � k;
if vect ¼ Nag FormP and n � k, n ¼ m.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

kEk2 ¼ Oð�Þ;

where � is the machine precision. A similar statement holds for the computed matrix PH .

8 Further Comments

The total number of real floating-point operations for the cases listed in Section 3 are approximately as
follows:

1. To form the whole of Q:

16
3
nð3m2 � 3mnþ n2Þ if m > n,

16
3
m3 if m � n;

2. To form the n leading columns of Q when m > n:

8
3
n2ð3m� nÞ;

3. To form the whole of PH :

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ktc

[NP3645/7] f08ktc.3



16
3
n3 if m � n,

16
3
m3ð3n2 � 3mnþm2Þ if m < n;

4. To form the m leading rows of PH when m < n:

8
3
m2ð3n�mÞ.

The real analogue of this function is nag_dorgbr (f08kfc).

9 Example

For this function two examples are presented, both of which involve computing the singular value
decomposition of a matrix A, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i

�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

1
CCCCCCA

0
BBBBBB@

in the first example and

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i

�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

1
A

0
@

in the second. A must first be reduced to tridiagonal form by nag_zgebrd (f08ksc). The program then

calls nag_zungbr (f08ktc) twice to form Q and PH , and passes these matrices to nag_zbdsqr (f08msc),
which computes the singular value decomposition of A.

9.1 Program Text

/* nag_zungbr (f08ktc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>
int main(void)
{

/* Scalars */
Integer i, ic, j, m, n, pda, pdc, pdu, pdvt, d_len;
Integer e_len, tauq_len, taup_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *c=0, *taup=0, *tauq=0, *u=0, *vt=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define VT(I,J) vt[(J-1)*pdvt + I - 1]
#define U(I,J) u[(J-1)*pdu + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define VT(I,J) vt[(I-1)*pdvt + J - 1]

f08ktc NAG C Library Manual

f08ktc.4 [NP3645/7]



#define U(I,J) u[(I-1)*pdu + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf("f08ktc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

for (ic = 1; ic <= 2; ++ic)
{

Vscanf("%ld%ld%*[^\n] ", &m, &n);
d_len = n;

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdc = n;
pdu = m;
pdvt = m;
e_len = n-1;
tauq_len = n;
taup_len = n;

#else
pda = n;
pdc = n;
pdu = n;
pdvt = n;
e_len = n-1;
tauq_len = n;
taup_len = n;

#endif
/* Allocate memory */
if ( !(a = NAG_ALLOC(m * n, Complex)) ||

!(c = NAG_ALLOC(n * n, Complex)) ||
!(taup = NAG_ALLOC(taup_len, Complex)) ||
!(tauq = NAG_ALLOC(tauq_len, Complex)) ||
!(u = NAG_ALLOC(m * n, Complex)) ||
!(vt = NAG_ALLOC(m * n, Complex)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
/* Reduce A to bidiagonal form */
f08ksc(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
if (m >= n)

{
/* Copy A to VT and U */
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
VT(i,j).re = A(i,j).re;
VT(i,j).im = A(i,j).im;

}
}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ktc

[NP3645/7] f08ktc.5



for (i = 1; i <= m; ++i)
{

for (j = 1; j <= MIN(i,n); ++j)
{

U(i,j).re = A(i,j).re;
U(i,j).im = A(i,j).im;

}
}

/* Form P**H explicitly, storing the result in VT */
f08ktc(order, Nag_FormP, n, n, m, vt, pdvt, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Form Q explicitly, storing the result in U */
f08ktc(order, Nag_FormQ, m, n, n, u, pdu, tauq, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute the SVD of A */
f08msc(order, Nag_Upper, n, n, m, 0, d, e, vt, pdvt, u,

pdu, c, pdc, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08msc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print singular values, left & right singular vectors */
Vprintf("\nExample 1: singular values\n");
for (i = 1; i <= n; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0?"\n":" ");
Vprintf("\n\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

n, n, vt, pdvt, Nag_BracketForm, "%7.4f",
"Example 1: right singular vectors, by row",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, u, pdu, Nag_BracketForm, "%7.4f",
"Example 1: left singular vectors, by column",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
{

/* Copy A to VT and U */
for (i = 1; i <= m; ++i)

{
for (j = i; j <= n; ++j)

{

f08ktc NAG C Library Manual

f08ktc.6 [NP3645/7]



VT(i,j).re = A(i,j).re;
VT(i,j).im = A(i,j).im;

}
}

for (i = 1; i <= m; ++i)
{

for (j = 1; j <= i; ++j)
{

U(i,j).re = A(i,j).re;
U(i,j).im = A(i,j).im;

}
}

/* Form P**H explicitly, storing the result in VT */
f08ktc(order, Nag_FormP, m, n, m, vt, pdvt, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Form Q explicitly, storing the result in U */
f08ktc(order, Nag_FormQ, m, m, n, u, pdu, tauq, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ktc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute the SVD of A */
f08msc(order, Nag_Lower, m, n, m, 0, d, e, vt, pdvt, u,

pdu, c, pdc, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08msc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print singular values, left & right singular vectors */
Vprintf("\nExample 2: singular values\n");
for (i = 1; i <= m; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\n\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, vt, pdvt, Nag_BracketForm, "%7.4f",
"Example 2: right singular vectors, by row",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, m, u, pdu, Nag_BracketForm, "%7.4f",
"Example 2: left singular vectors, by column",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:
if (a) NAG_FREE(a);
if (c) NAG_FREE(c);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ktc

[NP3645/7] f08ktc.7



if (u) NAG_FREE(u);
if (vt) NAG_FREE(vt);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);

}
return exit_status;

}

9.2 Program Data

f08ktc Example Program Data
6 4 :Values of M and N, Example 1

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A
3 4 :Values of M and N, Example 2

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

9.3 Program Results

f08ktc Example Program Results

Example 1: singular values
3.9994 3.0003 1.9944 0.9995

Example 1: right singular vectors, by row
1 2 3 4

1 (-0.6971,-0.0000) (-0.0867,-0.3548) ( 0.0560,-0.5400) (-0.1878,-0.2253)
2 ( 0.2403, 0.0000) ( 0.0725,-0.2336) (-0.2477,-0.5291) ( 0.7026, 0.2177)
3 (-0.5123, 0.0000) (-0.3030,-0.1735) ( 0.0678, 0.5162) ( 0.4418, 0.3864)
4 (-0.4403, 0.0000) ( 0.5294, 0.6361) (-0.3027,-0.0346) ( 0.1667, 0.0258)

Example 1: left singular vectors, by column
1 2 3 4

1 (-0.5634, 0.0016) (-0.2687,-0.2749) ( 0.2451, 0.4657) ( 0.3787, 0.2987)
2 ( 0.1205,-0.6108) (-0.2909, 0.1085) ( 0.4329,-0.1758) (-0.0182,-0.0437)
3 (-0.0816, 0.1613) (-0.1660, 0.3885) (-0.4667, 0.3821) (-0.0800,-0.2276)
4 ( 0.1441,-0.1532) ( 0.1984,-0.1737) (-0.0034, 0.1555) ( 0.2608,-0.5382)
5 (-0.2487,-0.0926) ( 0.6253, 0.3304) ( 0.2643,-0.0194) ( 0.1002, 0.0140)
6 (-0.3758, 0.0793) (-0.0307,-0.0816) ( 0.1266, 0.1747) (-0.4175,-0.4058)

Example 2: singular values
3.0004 1.9967 0.9973

Example 2: right singular vectors, by row
1 2 3 4

1 ( 0.2454,-0.0001) ( 0.2942,-0.5843) ( 0.0162,-0.0810) ( 0.6794, 0.2083)
2 (-0.1692, 0.5194) ( 0.1915,-0.4374) ( 0.5205,-0.0244) (-0.3149,-0.3208)
3 (-0.5553, 0.1403) ( 0.1438,-0.1507) (-0.5684,-0.5505) (-0.0318,-0.0378)

Example 2: left singular vectors, by column
1 2 3

1 ( 0.6518, 0.0000) (-0.4312, 0.0000) ( 0.6239, 0.0000)
2 (-0.4437,-0.5027) (-0.3794, 0.1026) ( 0.2014, 0.5961)
3 (-0.2012, 0.2916) (-0.8122, 0.0030) (-0.3511,-0.3026)

f08ktc NAG C Library Manual

f08ktc.8 (last) [NP3645/7]


	f08ktc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



